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ABSTRACT 

Estimating the failure time of a product with a high degree of confidence is a 

difficult endeavor. Clearly, if the product is inexpensive and fails quickly, extensive tests 

can be run to make prediction more accurate. When the item under scrutiny is expensive, 

not prone to failure, or both, calculating accurate estimates and confidence bounds (CBs) 

becomes more difficult. Much of our military uses end-items that fall into this category. 

Furthermore, many methods currently in use are prone to error, sometimes making a 

critical part appear more reliable than it actually is. The lives of our soldiers, sailors, 

airmen, and Marines often depend on accurate reliability estimates for the equipment and 

weapons they work on every day. 

This thesis first introduces reliability and the common techniques for measuring 

it. Secondly, it shows that these estimates are often biased. Next, this bias is quantified 

using Monte Carlo simulation and corrected through simple tables and equations. The 

tables and equations can be used to map nominal confidence bounds to the actual 

confidence bounds. Lastly, these results are applied to a Marine Corps program and a 

test run at a major automotive brake system manufacturer. These examples will illustrate 

the impact of uncorrected bias and what can be done to correct it. 
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THESIS DISCLAIMER 

The views expressed in this thesis are those of the author and do not reflect the 

official policy or position of the Department of Defense or the U.S. Government. 
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EXECUTIVE SUMMARY 

Estimating the failure time of a product with a high degree of confidence is a 

difficult endeavor. Clearly, if the product is inexpensive and fails quickly, extensive tests 

can be run to make prediction more accurate. When the item under scrutiny is expensive, 

not prone to failure, or both, calculating accurate estimates and confidence bounds (CBs) 

becomes more difficult. Much of our military uses end-items that fall into this category. 

Furthermore, many methods currently in use are prone to error, sometimes making a 

critical part appear more reliable than it actually is. The lives of our soldiers, sailors, 

airmen, and Marines often depend on accurate reliability estimates for the equipment and 

weapons they work on every day. 

The Weibull distribution is widely used in reliability estimation because of its 

versatility. It can describe increasing, constant, and decreasing failure rates. The military 

and industry alike use the Weibull distribution for estimating reliability and the 

associated CBs. Rank regression, maximum likelihood estimation, and Bayesian 

methods are just a few of the tools that exploit the Weibull distribution to achieve these 

estimates. Past research reveals that while they do provide insight, the nominal CBs use 

large-sample or asymptotic theory and are often far too optimistic or biased. 

"In practice, this theory is applied to small samples, since crude 

theory is better than no theory. Confidence bounds are then much 

too short, but are usually wide enough to be sobering." (Nelson, 

1990, pg. 236) 

XIX 



An accurate mapping of the actual CBs to the nominal CBs could significantly 

reduce this uncertainty. For example, if we want the true 90% lower confidence bound 

(LCB), we may have to compute a greater LCB using a correction factor. This thesis 

uses Monte Carlo simulation to explicitly determine coverage for common rank 

regression and maximum likelihood CB estimation techniques. It shows that the nominal 

CBs are biased and do not represent the desired confidence. Furthermore, functions are 

developed to map the actual CB to the desired confidence bound. Lastly, the impact of 

biased CBs and how these effects should be measured and corrected is illustrated with 

two examples. The results are applied to a Marine Corps program and a test run at a 

major automotive brake system manufacturer. These examples will illustrate that the 

impact of uncorrected bias can result in reliability estimation error as large as 25 percent. 

The effects of this error are obvious. The military could deploy with systems that don't 

survive as long as expected and without the necessary logistical support to fix the 

problem. 

XX 



I. INTRODUCTION 

A.        OVERVIEW 

The importance of product reliability to the military cannot be overstated. Items 

needing frequent repair or replacement become increasingly burdensome or unavailable 

as the military deploys more often and farther from significant logistical support. The 

issue of reliability has evolved and developed into a key element in competition for 

military contracts. Since the 1960's, the growth in attention to the reliability of a product 

has been extensive. Its impact on both the liability of the manufacturer and its efficient 

and safe use by the operator was recognized. Early in the twentieth century, efforts to 

study the "survival" of medical patients undergoing different treatments began. In the 

1960's, the same science was applied to military and space programs due to demands for 

more reliable equipment (Nelson, 1992, pg. 3). Now methods are being widely 

developed for engineering applications to many consumer and industrial products. 

Quantifying and accurately estimating reliability is a science, and few people in 

the military are trained to do it. In this chapter, I first introduce the reader to reliability 

and some common techniques for measuring it. Second, I show that these techniques are 

biased, that is, they routinely do not return accurate or true estimates. Lastly, the bias is 

quantified using Monte Carlo simulation, and corrected using simple tables and 

equations. It would be advantageous if personnel tasked with acquiring equipment within 

our military were aware of how reliability is commonly estimated, the shortfalls of the 

estimates, and finally, how they can be corrected. 



B.        BACKROUND 

The reliability of an item is the probability that the item will perform a specified 

function, under specified operational and environmental conditions, at and throughout a 

specified time. The word probability represents the random nature of the events that 

cause a product to fail. Increased reliability is associated with a reduction in the 

frequency of these random events at a given time (Kales, pg. 7). Before reliability can be 

tested and measured, the manufacturer and user must agree on what function the product 

should perform and the conditions under which it will operate. Furthermore, realistic 

tests must be designed to capture these functions and conditions. Lastly, there must be 

agreement on how long a product should last. This thesis assumes that the parties 

involved agreed on and achieved accurate tests, and will focus on the probability and 

confidence that a product will last for a specified time. 

The time at which 1% of the product will fail, on average, is called the Bl time. 

This is a common measure throughout industry. For a given Weibull distribution, with 

known parameters rj and ß, the Bl time is easily calculated from the Weibull cdf: 

F(t) = .01 = 1- exp[-(t/r]f], (1) 

then solving for / 

t = Bl time = r|*exp[(l/ß)ln(-ln(l-.01))] = T|[-ln(.99)]1/ß .    (2) 

When sampling from a Weibull distribution where K\ and ß must be estimated, 

confidence bounds for Bl are commonly calculated using the t and normal distributions. 

The quantity t in equation 2, when computed using estimates for Tj and ß, is near the 

midpoint of its distribution.   If the estimates for T| and ß were unbiased and normally 



distributed, the actual t would be less than the Bl time 50% of the time and more than the 

Bl time 50% of the time. In other words, we are 50% confident that 99% of the product 

will last until t. In reliability estimation, the user often wants lower bound confidence 

measurements. The user wants to know how long 99% of the product will last with a 

certain degree of confidence. For example, the user may ask for the Bl time at 90% 

confidence. This time is called the B1LCB90. The B1LCB90 will be lower than the Bl 

time, representing the uncertainty in the estimated Bl time. As the number of samples 

increases, the proportion of sample based LCBs that will cover the actual value should 

approach 90% (Figure 1, right). For many methods, and small sample sizes, the 

proportion doesn't approach 90% (Figure 1, left). This thesis attempts to address and 

remedy this shortfall. All further reference to Bl times and their lower confidence 

bounds (LCBs) will be represented by B1LCBX, where X is [(l-a)100%]. 

When n is small the parameter estimates of r| and ß are biased, and therefore the 

Bl estimate is biased. The normal assumption and associated CB calculations become 

less accurate. The t and normal distributions are still used for estimates because the small 

sample distributions for r\ and ß have not been derived (Nelson, 1992, pg. 227). 

Recognizing and defining how the nominal normal based CB coverage differs from the 

actual CB coverage is central to this thesis. 
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Figure 1. Comparing Biased LCBs with Unbiased LCBs 

The proportion of LCB's that cover the Bl time will not approach 90% on the left. Correcting the bias 
through Monte Carlo simulation will result, ideally, in a proportion approaching 90%. 



II.        STATISTICAL BACKROUND 

A.       THE WEIBULL DISTRIBUTION 

The two-parameter Weibull distribution is widely used in product reliability 

testing because it is flexible and therefore fits a variety of data. Its two parameters are the 

shape parameter (ß) and the scale parameter (r\). The shape parameter determines the 

shape of the distribution and represents the rate at which a product fails. The scale 

parameter determines the characteristic life, specifically, the time at which 63.2 percent 

of the product fail. The shape parameter is unitless and the scale parameter is in units of 

time. For the special case where ß = 1, the Weibull is the exponential distribution. For ß 

= 2, it is a Raleigh distribution. For 3 < ß < 4, the Weibull is very close to the normal and 

when ß > 10 it is close to the smallest extreme value distribution. The range of ß and r\ is 

the positive real numbers (ReliaSoft, pg. 98). 

The Weibull cumulative distribution F(t) is 

F(t) = 1 -exp[-(t/TT)ß]  ,t>0;r\,ß>0 

where F(t) is the fraction that fail by time t. The reliability function R(t) is 

R(t) = 1 -F(t) = exp[-(t/T])ß]   ,t>0; r\,ß>0        (3) 

where R(t) is the fraction surviving at time t. 

The Weibull is related to the smallest extreme value distribution (SEV). This 

thesis will show that this relationship allows the use of an "ancillary statistic," (Lawless, 

pg. 147) that is, a statistic whose distribution is independent of the two Weibull 

parameters, even if the parameters are estimated from the data. 



B. THE SMALLEST EXTREME VALUE DISTRIBUTION 

Analysis of Weibull data requires familiarity with the smallest extreme value 

(SEV) distribution. While SEV is used for many types of data, including reliability data, 

it is mainly of interest because it is related to the Weibull distribution. Weibull data are 

often analyzed in terms of the simpler SEV because it is a location/scale distribution that 

allows standardization (Nelson, 1992, pg. 39).   Using a simple transformation of the 

Weibull parameters, a corresponding SEV cumulative distribution function (cdf) is 

obtained.   The SEV cdf 

F(x) = 1 - exp{- exp[(x-a)/b]};  -°° < x < °°, (4) 

has two parameters, a location parameter a, and a scale parameter b. Both are 

transformations of the Weibull parameters (a = ln(T|), b = 1/ß). Converting the Weibull 

cdf into a SEV cdf is rather simple. The steps are 

t = ex 
(1) F(t)      =l-exp[-(t/ii)ß] transform x - = ln(t) 

(2) = l-exp[-(ex/n)ß] 

(3) = 1 - exp[-(ex/eln(t1))ß] a = InOi) 

(4) = 1 - exp[-(ex/ea)ß] 

(5) = l-exp[-(ex-a)ß] 

(6) = l-exp{-exp[(x-a)ß]} b = l/ß 

(7) = 1 - exp{-exp[(x-a)/b]} the SEV cdf 

The standard cdf is 

*P(z) = 1 - exp{- exp[z]};  -oo<x<°°,        (5) 



where z = (x - a)/b is called the "standard deviate." *F(z) is tabulated by Meeker and 

Nelson (1974). This conversion is crucial to Weibull data analysis because we can 

express Weibull data in the following form of 

F(x) = Y[(x-a)/b],      -oo<x<oo.    (6) 

R(x) = 1 - ^[(x-a)/b], -oo <x < °°.    (7) 

The estimated reliability no longer depends on what the values of a and b actually are, 

but on the sample size and censoring mechanism. The use of this standardization is 

similar to the t distribution. Recall that for large n, the random variable 

Z = (x - u) / (S/Vn) 

has approximately a standard normal distribution. When n is small, S is no longer likely 

to be as close to G, so the variability increases. Therefore, the distribution of 

(x - u) / (S/Vn) will be more spread out than the normal. The new distribution is the t 

distribution: 

T = (x - ju) / (S/Vn). 

The normal distribution is governed by the mean and standard deviation. A / distribution 

is governed only by the sample size, which determines the degrees of freedom. 

Transforming the Weibull into the SEV gives us similar results. The Weibull has 

two parameters rj and ß. The SEV reliability distribution R(z) = 1 - V(/(z), where 

z = (x-a)/b, is governed by the sample size, number of failures and the censoring 

mechanism. R(z) no longer depends on the values of a and b. Monte Carlo simulations 

support this result. For given values of sample size n, and number of failures k, changing 

T| and ß doesn't change the estimates and CB's for R(t). For example, two Monte Carlo 



simulations of 4000 trials were run for n=3 and k=3. The first simulation used r\ = 1000 

and ß = 2 and the second used T| = 2 and ß = 1000. Both runs calculated B1LCB90. The 

binomial coverage probability was then calculated. The results are tabled below. 

B1LCB90 

3 = 2         T| = 1000 0.828 

ß = 1000   T| = 2 0.827 

Table 1. Comparison of Coverage Probabilities for Different Parameters of the Weibull 
Distribution 

The results illustrate that the B1LCB90 coverage probabilities are independent of the 

estimated Weibull parameters and therefore support the "ancillary statistic" phenomenon 

discussed earlier. The results presented in this thesis are applicable to all tests that 

sample from any assumed 2-parameter Weibull distribution. 

C.        CENSORING AND SAMPLE SIZE 

Constraints on the study of a product's reliability often restrict the observation of 

exact failure times. Censoring data is a necessity when time or cost limit the length of a 

reliability study. Time censoring, or "Type I censoring," results when the study ends at a 

predetermined time before all units have failed. Failure censoring, or "Type II 

censoring," occurs when the test terminates after a specified number of failures. All 

items under test fall into one of two categories. The item either failed or was suspended. 

Suspended means that the item was still working when the test ended, or was removed 

from the test for reasons other than failure. How items are suspended impacts how the 

B1LCBX is calculated. 



This thesis focuses its research primarily on singly censored and complete data. 

Data is singly censored when all suspensions occur at the same time, usually after the last 

failure. Complete data occurs when all items have failed. The techniques are assumed to 

work for both Type I and Type II censoring. The simulation and estimation techniques 

can be expanded to multiply censored data. Data is multiply censored when suspensions 

occur at different points in time. An application with multiply censored data is presented 

later in this thesis. 

Sample size n will be defined as the number of units tested. The number of 

failures k must be less than or equal to sample size. When k is large, maximum 

likelihood estimators approach the minimum variance unbiased estimators (MVUE) 

(Lawless, pg. 291). When n, and hence k, is small this thesis will show that these 

asymptotic properties do not hold. This will become clear as this thesis progresses. 

Table 1 outlines exactly which n and k combinations that will be studied. 

Sample 
Size 

Number of 
Failures 

n k 
3 3 
6 3 
6 4 
6 5 
6 6 
9 3 
9 5 
9 7 
9 9 

12 3 
12 6 
12 9 
12 12 

Table 2. List of (n,k) Pairs to be Studied 



A minimum of three failures is required in order to attain a regression line and variance 

estimate. This thesis will focus on small sample sizes with complete Type I and Type II 

data, and singly censored Type I and Type II data. 

D.       LINEAR RANK REGRESSION 

Linear regression requires a straight line be fit to a set of data points such that the 

sum of squares of the deviation is minimized (ReliaSoft, pg. 39). The data points lie in a 

plot where the x-axis is the logffailure time) and the y-axis is log(-log(l-R(t))). For 

complete data and right censored data where all suspensions occur after the last failure, 

the median rank (MR) is used for R(t): 

MR = 1/(1 +((N-j+l)/j) *F5:m:n) (8) 

m = 2(N-j+l) 

n = 2*j 

where F.5;m;n denotes the median of the F distribution with m and n degrees of freedom, 

for the jth failure out of N items (ReliaSoft Corp, pg. 38). For right censored data with 

suspensions occurring before the last failure, a failure order number (FON) is calculated. 

The FON is an adjustment to the median rank and is determined by the location of the 

suspensions (ReliaSoft Corp, pg. 62). For example, a test is run on three items. The first 

item is suspended (for reasons other than failure) at / = 5 and the second and third failed 

at t = 10, 20 respectively. Simply calculating a median rank would disregard suspension 

of the first item, even though it might have failed first, second, or third in the interval 5 < 

t < 20, had it not been suspended.   Calculating a FON accounts for all these possibilities. 

FON calculation is described in detail in ReliaSoft Corporations's, Life Data Analysis 

10 



Reference. Once ranks are calculated, the points are plotted and a line is fit. This line 

yields a slope and intercept from which the time at where the Bl time is easily derived. 

E.        MAXIMUM LIKELIHOOD ESTIMATION 

Maximum likelihood estimation (MLE) is a method of parameter estimation that 

is independent of data ranks. MLE requires that the distribution be specified and gives 

the values of the parameters for which the observed sample is most likely to have been 

generated. 

If x is a continuous random variable with a PDF 

f(x;0],&2,...0k), 

where 8^d2,...6k are k unknown constant parameters which are to be estimated and 

JC,, x2 ,...xN are TV independent complete data observations, then the likelihood function is 

given by 

L(di, 62,... 6i \x,, x2, ...xN) = Z, = nf(x,; 6,, 62,... ty 

and the logarithmic likelihood function is 

A = lnL = fj]nf(xi-AA,-A)- 

The MLE of 6^,62,...6k, are obtained by maximizing either L or A (ReliaSoft Corp, pg. 

48). Maximizing A is computationally easier and the MLE of 6^,62,...6k are the 

simultaneous solutions of k equations such that 
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*A>-0,    , = 1,2,..*. 
^ 

The MLE method usually works well with small sample sizes and can converge with only 

one known failure. It tends to overestimate the parameters but may not converge in the 

vicinity of the transition point ( ß = 1) (Sorrel, pg. 20). As MLEs are only asymptotically 

unbiased and normally distributed, this thesis will show that BXs based on MLEs can be 

poorly behaved for small sample sizes. 

F.        COVERAGE PROBABILITIES VERSUS LEVEL OF CONFIDENCE 

Confidence intervals are useful ways to quantify uncertainty due to sampling error 

arising from limited sample sizes. Confidence intervals have a specified level of 

confidence (100(l-a)%), typically 90% or 95%, expressing one's confidence (not 

probability) that a specific interval contains the quantity of interest. It is important to 

recognize that the confidence level pertains to a probability statement about the 

performance of the confidence interval procedure rather than a statement about any 

particular interval. 

"Coverage probability" is the probability that a confidence interval procedure will 

result in the interval containing the quantity of interest. Oftentimes, and this thesis will 

show, the specified "level of confidence" [generically 100(l-cc)%] is not equal to the 

coverage probability. In most practical problems involving censored data, there are no 

exact confidence interval procedures. This thesis checks the confidence interval 

approximations of several estimation techniques through simulation.   Furthermore, it 
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provides a correction mechanism to minimize the difference between the level of 

confidence and the coverage probability. 
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III.      METHODOLOGY 

A. BACKROUND 

Determining coverage probabilities requires that the parameters be estimated, and 

the variance ofthat estimate be calculated. There are an abundance of software tools that 

do this. This thesis uses WEIBULL++ and S-PLUS for research, comparison, and 

simulation. Both software packages do rank regression and maximum likelihood 

estimation. WEIBULL++ operates in a Windows environment and is very user friendly, 

but it does not accommodate robust Monte Carlo simulation. S-PLUS is more difficult to 

use, but it provides more flexibility and simulation power. Furthermore, there are slight 

differences in how the two use the variance of the estimates.   For these reasons, the 

program used in this thesis was written and implemented in S-PLUS, and WEIBULL++ 

was used for program validation. The program and remarks can be found in Appendix C. 

B. SIMULATION 

1.        Inputs and Outputs 

There are six inputs for the program: 

a. Sample Size (n) 
b. Number of Failures (k) 
c. Weibull Shape Parameter (ß) 
d. Weibull Scale Parameter (r\) 
e. Confidence Level ([ 1 -a] 100%) 
f. Number of Iterations 
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The first four are self-explanatory. The program iterates through a confidence level 

vector, which holds the following values: 

[.8, .85, .875, .9, .92, .94, .95, .96, .97, .98, .985, .99, .993, .995, .997, .999, .9999,.99999] 

Finally, the number of iterations is 1000 and is used for all calculations. 

There are three outputs. Each output is a coverage probability associated with 

different estimation techniques. These techniques are discussed and compared later in 

this chapter. 

2.        Generating the Data 

The first step in the simulation involves generating and organizing the data. For 

each iteration, n random variables are drawn from a 2-parameter (ß,T|) Weibull 

distribution. Each draw represents a failure time. The times are then ordered in a vector 

from the lowest value to the highest as in Table 3. 

Time 
23.4 

456.4 
81.5 

1000.2 
213.9 
800.7 

Time 
23.4 
81.5 

213.9 
456.4 
800.7 
1000.2 

Table 3. Ordering Vector of Weibull Values from Lowest to Highest 

The last n-k positions in the vector are suspended, that is, they are assigned the time in 

the kth position. For example if n = 6 and k = 3, see Table 4. 
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Index Time State 
1 23.4 Failure 
2 81.5 Failure 
3 213.9 Failure 
4 213.9 Suspended 
5 213.9 Suspended 
6 213.9 Suspended 

Table 4. Reassignment of Suspended Values 

For complete data n - k = 0, therefore, there are no suspensions. For right censored data, 

n > k, and there are n - k suspensions. The result is an ordered vector containing all 

failures and suspensions. 

3.        Rank Regression 

If the vector contains complete data or right censored data where all suspensions 

occur after the last failure, median ranks (MR) are calculated. If suspensions occur 

before the last failure, failure order numbers (FON) are calculated. In order for the 

regression to be linear, the following transformations are necessary: 

y = log(-log(l-MR)) or y = log(-log(l-MR(FON))) 

x = log (failure time) 

For each failure from 1 to k, there is an associated (x,y) coordinate. S-Plus then runs 

regression of x on y in order to calculate reliability estimates. To calculate the Bl time, 

the time where R(t) = .99, the program asks for the value of x where y = log(-log(.99)). 

This prediction is based on the regression and is called the fit. Additionally, S-PLUS 

returns the standard error for that fit based on the uncertainty in the estimates oft] and ß. 
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4. Maximum Likelihood Estimation 

Calculating MLE in S-PLUS is very straight forward. S-PLUS has a large library 

of functions for use in survival analysis. Recall the ranked vector created during data 

generation (Table 3). This program uses the S-PLUS functions "Surv" and "survReg", 

with the vector, to achieve the R(t) = .99 fit and standard error for that fit. 

5.        Determining Lower Confidence Bounds 

The regression and maximum likelihood calculations each provide a fit and 

standard error for the fit. Using this data, three different B1LCBX values (Table 5) are 

calculated for each X in the confidence level vector. The first method (RRX-RRX) used 

the fit and standard error from rank regression. The second (MLE-MLE) used the fit and 

standard error from the MLE. The third (RRX-MLE) used the fit from rank regression 

and standard error from MLE. 

Method Type 
Estimate of 
Parameters 

Estimate of 
Variance Equation 

RRX-RRX B1LCBX RRX RRX fit.RRX - qt(a,k-2)*se.RRX 
MLE-MLE B1LCBX MLE MLE fit.MLE - qnorm(a)*se.MLE 
RRX.MLE B1LCBX RRX MLE fit.RRX - qt(a,k-2)*se.MLE 

Table 5. Equations for Estimating B1LCBX 

The t distribution is used for RRX confidence bounds and the normal is used for MLE 

confidence bounds. The fourth method evaluated in this thesis was calculated in 

Weibull++. This technique estimated the parameters using rank regression, and then 

used the parameters in the variance/covariance matrix to determine a MLE estimate of 

the standard error. This method will be named RRX-MLE W++. The S-PLUS RRX- 

MLE differs from RRX-MLE W++ in that the latter used the MLE estimate of the 
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parameters to calculate the standard error. The RRX-MLE W++ is only used when the 

data is complete data. The W++ simulation software did not accommodate the censoring 

schemes used in this thesis. Therefore, four methods are compared for complete data and 

three methods for censored data. 

6.        Determining Coverage Probabilities 

The discussion in CH II, Section B reveals that the coverage probability is 

independent of ß and r\. The same results are achieved for any value of ß and t|. The 

shape and scale parameters used in the Monte Carlo simulation were 2 and 1000 

respectively. The true Bl time is therefore easy to calculate because each draw were 

samples from a known distribution. Using equation (2) 

Bl = T]*expf(l/ß)log(-log(l-.01))J 

Bl = 1000 * exp[(l/2)log(-log(.99))] 

Bl = 100.25 

For each iteration, a count is kept for all four B1LCBX. Each time a B1LCBX is below 

100.25 the true Bl is covered and the count is incremented by 1. After 1000 iterations 

each count is divided by 1000. The resulting fraction is the estimated actual coverage. 

The confidence level ((1 - a) 100%) is the nominal coverage. A truly unbiased method 

for estimating B1LCBX would result in actual coverage equaling nominal coverage. 
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IV.      RESULTS 

A. INTRODUCTION 

The results of the Monte Carlo simulation are presented graphically in this 

chapter. For each (n, k) pair considered, a graph was developed to illustrate the 

performance of each estimation technique. The coverage probabilities generated in S- 

PLUS were exported into ARC (Cook, pg. 3), a statistical package developed at the 

University of Minnesota. ARC easily displays the data and allows us to smooth it based 

on ordinary least squares. Smoothing allows us to compare each estimation technique. A 

sample graph is shown in Figure 1. The x-axis is labeled "nominal coverage" and 

represents the the confidence level X used in each B1LCBX calculation. 

Sample  =  9,        Failures  =  3 

D 

0.8   0.85   0.9   0.95 
Nominal Coverage 

Figure 2. Example Comparison Graph of Nominal Confidence ((1 - oc)100%) Versus 
Actual Coverage Probability for Three Estimation Techniques. 

21 



B1LCBX should be below the true Bl time X percent of the time. The y-axis is labeled 

"Actual Cvrg" and represents the actual coverage determined by the Monte Carlo 

simulation. 

The graph in Figure 1 can be read in two useful ways. First, if the reader wants to 

know the actual coverage from a given B1LCBX calculation, scan across the x-axis and 

find the appropriate X. Then trace up the graph until you hit the curve for the method 

used. Finally, read across to the y-axis. That value is the actual coverage of B1LCBX 

achieved by the particular estimation technique. For example, using Figure 1 and the 

estimation technique marked with "+", trace across the x-axis to X = .90. Trace up to the 

curve and across to the y-axis. That value is approximately .68. Therefore, using this 

method (+), a B1LCB90 actually covers the true Bl time only 68 percent of the time. 

To determine what X is needed to achieve a certain actual coverage, read up the 

y-axis to the desired actual coverage. Then trace across to the appropriate curve and 

down to the x-axis. The value on the x-axis is the X required to achieve the desired 

actual coverage. For example, using Figure 1 and the estimation technique marked with 

"+", read up the y-axis to the desired actual coverage .90. Then read across to the 

appropriate curve and down to the x-axis. The value is approximately .975. Therefore, a 

B1LCB97.5 must be calculated in order to achieve 90 percent actual coverage. 

In most cases, the graphs show the reader which estimation technique is least 

biased, that is, which is closest to the "actual = nominal coverage" line displayed on each 

graph. Furthermore, the graphs allow for "back-of-the-envelope" adjustments to X so 

that the B1LCBX calculations give the desired coverage probability.   Results are 

presented for each sample size considered. 
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B.        SAMPLE SIZE AND FAILURES (3,3) 

Sample sizes as small as 3 aren't uncommon throughout industry. The expense or 

vast time required to make certain products fail is significant. For failures equal to 3 the 

simulation produced consistent results. The combination of rank regression estimation of 

the parameters and MLE estimation of the variance (RRX-MLE) proved to consistently 

cover the true Bl time at a rate greater than a. The RRX-MLE method is represented by 

"x" in Figure 2. Figure 2 shows that although it lies closest to the "y=x" line where 

nominal coverage equals actual coverage, it covers the actual Bl too often. In fact a 

B1LCB99 covers Bl 100 percent of the time. The same result could be achieved by 

setting the B1LCB equal to 0. This result provides no useful information and therefore is 

not be considered. The MLE-MLE and RRX-MLE W++ methods fail to ever achieve 

100 percent coverage. A B1LCB100 doesn't cover the true Bl 100 percent of the time. 

We see that the nominal confidence bounds based on such small sample sizes are 

extremely suspect. The only choice for Bl estimation is RRX-RRX (+).   It 

underestimates coverage but finally reaches 100 percent coverage for sufficiently large X. 
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Sample  =3,       Failures  =  3 

u co 
>   • u o 

o 
0.8        0.85        0.9        0.95 

Nominal Coverage 

Figure 3. Comparison Graph of Nominal Confidence ([l-oc]100%) Versus Actual 
Coverage Probability for Four Estimation Techniques (n=3, k=3). 

RRX-MLE marked by "x", MLE-MLE marked by "o", RXX-RXX marked by "+", RRX-MLE W++ 
marked by "0". Based on Monte Carlo samples of size 1000. The x-axis denotes the confidence level (X) 
used, y-axis denotes actual coverage. The solid line y = x denoting actual coverage equals nominal 
coverage is included for comparison. 

C.        SAMPLE SIZE AND FAILURES (6,(3,4,5,6)) 

For failures equal to 3,4,5, and 6, the simulation produced consistent results. The 

combination of rank regression estimation of the parameters and MLE estimation of the 

variance (RRX-MLE) proved to best estimate the Bl time. The RRX-MLE method is 

represented by "x" in Figure 3. From Figure 3 we can see that in each case, it lies closest 

to the "y=x" line where actual coverage equals nominal coverage. 
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Sample * 6,  Failures 

0.85   0.9   0.95 
Nominal Coverage 

0.85   0.9   0.95 
Nominal Coverage 

Sample 

0.85   0.9  0.95 
Nominal Coverage 

Sample ■ 6, 

0.85   0.9   0.95 
Nominal Coverage 

Figure 4. Comparison Graph of Nominal Confidence ([l-a]100%) Versus Actual 
Coverage Probability for Four Estimation Techniques (n=6, k=3,4,5,6). 

RRX-MLE marked by "x", MLE-MLE marked by "o", RXX-RXX marked by "+", RRX-MLE W++ 
marked by "0". Based on Monte Carlo samples of size 1000. The x-axis denotes the confidence level (X) 
used, y-axis denotes actual coverage. The solid line y = x denoting actual equals nominal coverage is 
included for comparison. Each method fails to achieve the nominal coverage making the product seem 
more reliable that it actually is. The RRX-MLE method is least biased. Note that the y-axis scale changes 
from graph to graph. 

The RRX-MLE W++ implemented in Weibull++ for complete data (n=6, k=6), performs 

worse than RRX-MLE and MLE-MLE.   Notice that the RRX-RRX method works better 

for heavily censored data and gets worse as the number of failures k approaches the 

sample size n (Figure 4). MLE-MLE performs differently. It estimates poorly for 

heavily censored data, and better as k approaches n (Figure 5). 
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Figure 5. RRX-RRX Comparison of Censoring for Sample of Size 6. 

Number of failures marked by 3(o), 4(x), 5(0), 6(+). As the censoring increases, the coverage probability 
increases.   For example, if the desired coverage is .95, the actual coverage is .73 (k=6), .74 (k=5), .76 
(k=4), .81 (k=3). 

HLE-HLE  Censoring Comparison      N=6,   K=3,4,5, 6 
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Figure 6. MLE-MLE Comparison of Censoring for Sample of Size 6. 

Number of failures marked by 3(o), 4(x), 5(0), 6(+). As the censoring increases, the coverage probability 
decreases.  For example, if the desired coverage is .95, the actual coverage is approximately .86 (k=6), .73 
(k=5), .65 (k=4), .58 (k=3). 
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D.        SAMPLE SIZE AND FAILURES (9, (3,5,7,9)) 

For failures equal to 3, 5, 7, and 9, the simulation produced consistent results. 

The combination of rank regression estimation of the parameters and MLE estimation of 

the variance (RRX-MLE) proved to best estimate the Bl time. The RRX-MLE method is 

represented by "x" in Figure 6. From Figure 6 we can see that in each case, it lies closest 

to the "y=x" line where actual coverage equals nominal coverage.   The RRX-MLE W++ 

implemented in Weibull++ for complete data (n=6, k=6), performs worse than RRX- 

MLE and MLE-MLE.   Notice again that the RRX-RRX method works better for heavily 

censored data and gets worse as the number of failures k approaches the sample size n 

(Figure 7). MLE-MLE performs differently. It estimates poorly for heavily censored 

data, and better as k approaches n (Figure 8). Regardless of the value of k, RRX-MLE is 

the best estimator for Bl. 

27 



Sample Failures 

O.SS   0.9   0.9S 
Nominal Coverage 

Sample = 9, 

p- o 

Sample = 9, 

0.8S   0.9   0.95 
Nominal Coverage 

Sample = 9,  Failures = 9 

0.85   0.9   0.9S 
Nominal Coverage 

0.85   0.9   0.95 
Nominal Coverage 

Figure 7. Comparison Graph of Nominal Confidence ([l-oc]100%) Versus Actual 
Coverage Probability for Four Estimation Techniques (n=9, k=3,5,7,9). 

RRX-MLE marked by "x", MLE-MLE marked by "o", RXX-RXX marked by "+", RRX-MLE W-H- 
marked by "0". Based on Monte Carlo samples of size 1000. The x-axis denotes the confidence level (X) 
used, y-axis denotes actual coverage. The solid line y = x denoting actual equals nominal coverage is 
included for comparison. Each method fails to achieve the nominal coverage making the product seem 
more reliable that it actually is. The RRX-MLE method is least biased. 
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RRX-RRX Censoring Comparison N = 9, K = 3,5,7,9 

0.8 0.85 0.9 0.95 
Nominal Coverage 

Figure 8. RRX-RRX Comparison of Censoring for Sample of Size 9. 

Number of failures marked by 3(o), 5(x), 7(0), 9(+). As the censoring increases, the coverage probability 
increases.   For example, if the desired coverage is .95, the actual coverage is .71 (k=9), .72 (k=7), .73 
(k=5), .82 (k=3). 

HLE-HLE Censoring Comparison  N=9, K=3,5,7,9 

0.85     0.9     0.95 
Nominal Coverage 

Figure 9. MLE-MLE Comparison of Censoring for Sample of Size 9. 

Number of failures marked by 3(o), 5(x), 7(0), 9(+). As the censoring increases, the coverage probability 
decreases.   For example, if the desired coverage is .95, the actual coverage is .91 (k=9), .80 (k=7), .74 
(k=5), .60 (k=3). 
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E.        SAMPLE SIZE AND FAILURES (12,(3,6,9,12)) 

For failures equal to 3, 6, 9, and 12, the simulation produced consistent results. 

The combination of rank regression estimation of the parameters and MLE estimation of 

the variance (RRX-MLE) proved to best estimate the Bl time. The RRX-MLE method is 

represented by "x" in Figure 9. From Figure 9 we can see that in each case, it lies closest 

to the "y=x" line where actual coverage equals nominal coverage. The RRX-MLE W++ 

method implemented in Weibull-H- for complete data (n=12, k=12), performs worse than 

RRX-MLE and MLE-MLE.  Notice again that the RRX-RRX method works better for 

heavily censored data and gets worse as the number of failures k approaches the sample 

size n (Figure 10). MLE-MLE performs differently. It estimates poorly for heavily 

censored data, and better as k approaches n (Figure 11). For each value of A- considered, 

RRX-MLE proved to be the best estimator for B1. The performance of MLE-MLE 

approaches that of RRX-MLE for (n =12, k=12). Therefore it is clear that k must be 

greater than 12 for MLE-MLE to be the best estimator for Bl. 
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Figure 10. Comparison Graph of Nominal Confidence ([l-a]100%) Versus Actual 
Coverage Probability for Four Estimation Techniques (n=12, k=3,6,9,12). 

RRX-MLE marked by "x", MLE-MLE marked by "o", RXX-RXX marked by "+", RRX-MLE W++ 
marked by "0". Based on Monte Carlo samples of size 1000. The x-axis denotes the confidence level (X) 
used, y-axis denotes actual coverage. The line y = x is included for comparison. Each method fails to 
achieve the nominal coverage making the product seem more reliable that it actually is. The RRX-MLE 
method is least biased. 
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RRX-RRX Censoring Comparison   N=12,   K=3,6,9,12 
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Figure 11. RRX-RRX Comparison of Censoring for Sample of Size 12. 

Number of failures marked by 3(o), 6(x), 9(0), 12(+). As the censoring increases, the coverage probability 
increases.   For example, if the desired coverage is .95, the actual coverage is .66 (k=12), .66 (k=9), .66 
(k=6), .81 (k=3). 
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Figure 12. MLE-MLE Comparison of Censoring for Sample of Size 12. 

Number of failures marked by 3(o), 6(x), 9(0), 12(+). As the censoring increases, the coverage probability 
decreases.   For example, if the desired coverage is .95, the actual coverage is .94 (k=12), .80 (k=9), .75 
(k=6), .60 (k=3). 
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V.        PRACTICAL APLICATIONS 

A.        BRAKE SYSTEM APPLICATION 

A large automotive parts manufacturer tested a part for a brake system. The test 

simulated the stresses induced on the brake system by the customer. This company 

considers the life of the part to be 750,000 cycles. Seven parts were tested, the results are 

found in Table 6.   Six of the seven parts failed. The S-Plus Monte Carlo simulation was 

# Completed 
Cycles 

Failed (F) or 
Suspended (S) Sample 

1 822000 F 
2 831675 F 
3 849633 F 
4 887862 F 
5 887862 F 
6 901713 F 
7 901713 S 

Table 6. Data from the Results of the Brake Test 

run for n = 7 and k = 6. A comparison of the results for each estimation technique is 

found in Figure 12. Clearly, the RRX-MLE methods is the least biased estimator for Bl. 

A second order polynomial was then fit to the results of the Monte Carlo simulation 

(Table 7) for the RRX-MLE method. 

Y = -2.0547*X2 + 4.3094*X-1.2528 

This equation can now be used to map the nominal confidence to the actual confidence. 

The manufacturer wanted the number of cycles where 99% reliability at 90% confidence 

(B1LCB90) is attained.   Table 7 shows that when using RRX-MLE, B1LCB90 only 
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covers the true value 81.2% of the time.  The equation below will tell us what level of 

confidence is necessary to achieve 90% coverage probability. 

Y = -2.0547*(.90f + 4.3094*(.90) - 1.2528 

Y=.961 

In order to achieve a nominal B1LCB90 we must actually do a B1LCB96.1 calculation. 

Sample = 7         Failures  =  6 
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Figure 13. Comparison Graph of Nominal Confidence ([l-a]100%) Versus Actual 
Coverage Probability for Four Estimation Techniques (n=7, k=6). 

RRX-MLE marked by "x", MLE-MLE marked by "o", RXX-RXX marked by "+", RRX-MLE W++ 
marked by "0". Based on Monte Carlo samples of size 1000. The x-axis denotes the confidence level (X) 
used, y-axis denotes actual coverage. The line y = x is included for comparison. 

For this example, using RRX-MLE, the fit for Bl is 746275 cycles. The RRX-MLE 

estimate of B1LCB90 is 685515 cycles. According to the Monte Carlo simulation, the 

B1LCB90 will be below the true B1 only 81.2% of the time.   The estimate of 

B1LCB96.1 is 654976. According to Monte Carlo simulation, the Bl time will occur 

after 654976 cycles with a frequency approaching 90%. 
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Nominal 
Coverage 

Monte Carlo Sim 
Actual Coverage 

0.8 0.723 
0.85 0.751 

0.875 0.799 
0.9 0.812 

0.92 0.868 
0.94 0.864 
0.95 0.863 
0.96 0.863 
0.97 0.919 
0.98 0.932 

0.985 0.919 
0.99 0.953 

0.993 0.962 
0.995 0.965 
0.997 0.983 
0.999 0.991 
0.9999 0.998 

Table 7. Comparison of Actual Coverage Probability to Nominal Confidence ([1- 
oc]100%) for 6 Failures out of 7 Samples. 

Actual coverage determined by smoothing the data using second order polynomials fit to Monte Carlo 
simulation results. 

Using 2-parameter Weibull analysis, the results show that the expected life of 

750,000 cycles is unrealistic. The company elected to conduct 3-parameter Weibull 

analysis because this distribution fit their data more appropriately. This example also 

shows that the S-Plus code will expand and apply to any (n,k) pair. 

B. ADVANCED AMPHIBIOUS ASSAULT VEHICLE APPLICATION 

The Advanced Amphibious Assault Vehicle (AAAV) is the Marine Corps' 

upgrade to the Amphibious Assault Vehicle (AAV). Like the AAV, the AAAV is an 

armored vehicle used to move Marines safely over both ground and water. Instead of 

wheels, it moves on two tracks much like a tank. The tracks are kept on the system that 

turns them by objects called "centerguides." There are 102 centerguides per track. 
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Analysts performed Weibull analysis of centerguide failure/survival results. The data 

was obtained from recent testing performed at the Aberdeen Test Center, Aberdeen 

Proving Grounds (APG), Maryland. The data is displayed in Table 8. The analysts 

estimate the parameters, r\ and ß, of a two-parameter Weibull distribution using MLE. 

They estimate T| = 4600 and ß = 5.1 (US Army Material Systems Analysis Activity, pg. 

19). Using equation 2, the point estimate for Bl is 

Bl = 4600 * exp[(l/5.1) * log (- log (1-.01))] = 2895.9 miles. 

This estimate of Bl is the same achieved with the program developed in this thesis. 

Next, the analysts calculate a LCB80 on each parameter. The estimates are r\ = 4077.01 

and ß = 3.9527. From equation 2 the B1LCB80 is 

Bl = 4077 * exp[(l/3.9527) * log (- log (1-.01))] = 2244.1 miles. 

The S-Plus program uses the MLE estimate of both the fit and variance to validate that 

the estimation methods used at APG are the same as the methods used here. The S-Plus 

code returns the same answer, B1LCB80 = 2244.1 miles. The simulation is then run 

using MLE-MLE estimation to compare nominal confidence levels to the actual coverage 

probability. The simulation sets n = 204 and k = 23 where each failure occurs in the 

same position as the test set (Table 8) for each iteration. The results are shown in Table 

9. 
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Failed (F) or 

Suspended(S) 

Failed (F) or 

Suspended (S) 

Failed (F) or 

Suspended(S) 

Failed (F) or 

Suspended(S) Miles Run Miles Run Miles Run Miles Run 
2021 F 3049 S 3049 S 3049 S 
2021 F 3049 S 3049 S 3049 S 
2021 F 3049 S 3049 S 3049 S 
2021 F 3049 S 3049 S 3049 S 
2021 F 3049 S 3049 S 3049 S 
2021 F 3049 S 3049 S 3049 S 
2021 F 3049 S 3049 S 3049 S 
2337 F 3049 S 3049 S 3049 S 
2337 S 3049 S 3049 S 3049 S 
2337 S 3049 S 3049 S 3049 S 
2523 F 3049 S 3049 S 3049 S 
2523 F 3049 S 3049 S 3049 S 
2523 F 3049 S 3049 S 3049 S 
2523 F 3049 S 3049 S 3049 S 
2523 F 3049 S 3049 S 3049 S 
2523 F 3049 S 3049 S 3049 S 
2523 F 3049 S 3049 S 3049 S 
2833 F 3049 S 3049 S 3049 S 
2833 F 3049 S 3049 S 3049 s 
3049 F 3049 S 3049 S 3049 s 
3049 F 3049 S 3049 S 3049 s 
3049 F 3049 S 3049 S 3049 s 
3049 F 3049 s 3049 S 3049 s 
3049 F 3049 s 3049 S 3049 s 
3049 F 3049 s 3049 S 3049 s 
3049 S 3049 s 3049 s 3049 s 
3049 S 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 ■s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 
3049 s 3049 s 3049 s 3049 s 

Table 8. Data from Results of AAAV Centerguide Test. 

Table 9 shows us that the B1LCB80 previously calculated will lie below the true 
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Bl only 58.7% of the time. From Table 9 we can see that in order to get 80% coverage, 

we will have to compute roughly a B1LCB95. Fitting a second order polynomial to the 

tabled data gives us a more accurate estimate. 

Y = -.8104%80)2 + 1.8119%80) + .0073 = .938 

Nominal 
Coverage 

Monte Carlo Sim 
Actual Coverage 

0.8 0.587 
0.85 0.685 

0.875 0.699 
0.9 0.719 

0.92 0.792 
0.94 0.814 
0.95 0.801 
0.96 0.84 
0.97 0.86 
0.98 0.888 

0.985 0.897 
0.99 0.915 

0.993 0.931 
0.995 0.93 
0.997 0.941 
0.999 0.961 

0.9999 0.979 
0.99999 0.99 

Table 9. Comparison of Actual Coverage Probability to Nominal Confidence (fl- 
oe] 100%) for 23 Ordered Failures out of 204 Samples. 

Actual coverage determined by smoothing the data using a second order polynomial fit to Monte Carlo 
simulation results. 

A B1LCB93.8 is required for 80% actual coverage. B1LCB93.8 is 1597 miles. The 

results of the Monte Carlo simulation state that the true Bl will occur after 1597 miles, 

80% of the time. Comparing 1597 miles with 2244 miles shows us that estimating 

B1LCB80 with an assumed 2-parameter Weibull distribution using MLE-MLE, the 

estimate is 25% too optimistic.   This can have drastic effects when Marine Corps units 
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deploy or engage in long-term operations. The results illustrate that the AAAV may not 

last as long as expected. Without this knowledge, logistical planners may underestimate 

the number of spares required to keep this system operating at the necessary level. 
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VI.      CONCLUSIONS AND RECOMMENDATIONS 

A.        CONCLUSIONS 

The results of this thesis are clear. The most common methods for estimating Bl 

LCBs yield biased results, making the item under test appear more reliable that is actually 

is. The method for estimating least-biased Bl LCBs is a combination of rank regression 

and maximum likelihood estimation (RRX-MLE) using the wider t distribution for 

confidence bound calculations. The only case where this doesn't hold is n = 3 and k = 3. 

For this case, rank regression is recommended. No software package, to my knowledge, 

uses this combination (RRX-MLE) for Bl LCB estimation. 

When comparing straight rank regression (RRX-RRX) and straight maximum 

likelihood estimation (MLE-MLE), rank regression estimates Bl better for heavily 

censored data, and MLE estimates Bl better as k approaches n. Correction factors, based 

on Monte Carlo simulation, are the only means for these methods to accurately estimate 

Bl. If one doesn't have correction factors available, this thesis clearly shows which 

estimation technique is least biased for each (n,k) pair studied. 

The results also clearly show that some methods cannot predict Bl with high 

levels of confidence. The simulation results yield cases where the coverage probability 

doesn't converge to 1. These estimation techniques should not be used for those cases. 

Errors from Monte Carlo simulation can be reduced by increasing the number of 

trials, or fitting smooth functions to the results. Increasing the number of trials wasn't 

feasible for this thesis. After selecting the most appropriate estimation technique for each 

(n, k) pair, curves were fit to second order polynomials using ordinary least squares. The 
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equations were used to calculate the nominal confidence levels required to achieve 

common confidence levels used throughout the DoD and industry. The equations and 

nominal values appear in Table 10. If the recommended methods in Table 10 cannot 

Confidence Level Needed 
to Achieve X Equations for 

Nominal Confidence n k Method X = .80 X = .90 X = .95 X = .99 
3 3 RRX-RRX Y = -1.0203X2+2.2017X-.1834 0.9250 0.9717 0.9874 0.9963 

6 3 RRX-MLE Y = -.4786X2+1.4325X+.0422 0.8800 0.9438 0.9711 0.9913 

6 4 RRX-MLE Y = -1.33X2+2.865X-.536 0.9050 0.9652 0.9854 0.9968 

6 5 RRX-MLE Y = -2.022X2+4.2056X-1.1831 0.8873 0.9641 0.9874 0.9900 

6 6 RRX-MLE Y = -1.9021X-+4.3544-1.45 0.8162 0.9283 0.9700 0.9966 

9 3 RRX-MLE Y = -.4428X2+1.3044X+.1326 0.8927 0.9479 0.9722 0.9900 

9 5 RRX-MLE Y = -1.733X2+3.6177X-.8831 0.9019 0.9691 0.9897 0.9999 

9 7 RRX-MLE Y = -2.0468X2+4.3546X-1.3038 0.8699 0.9574 0.9858 0.9999 

9 9 RRX-MLE Y = .6034X2-.1355X+.5401 0.8179 0.9069 0.9559 0.9973 

12 3 RRX-MLE Y = -.4958X2+1.4681X+.0238 0.8810 0.9435 0.9710 0.9913 

12 6 RRX-MLE Y = -1.5926X2+3.3687-.7738 0.9019 0.9680 0.9891 0.9999 

12 9 RRX-MLE Y = -1.5921X2+3.4895X-.8943 0.8784 0.9566 0.9839 0.9999 

12 12 RRX-MLE Y = -.2974X2+1.5453X-.2429 0.8030 0.9070 0.9567 0.9955 

Table 10. Equations for Mapping Nominal Confidence to Actual Coverage Using 
Second Order Polynomials. 

For each (n,k) pair, the least biased method is accompanied by an equation that maps nominal or "desired" 
coverage ([1-a] 100%) to actual coverage probability. Based on Monte Carlo samples of size 1000. The 
desired confidence, or nominal coverage, is represented by X. The required confidence (X) to get the 
nominal coverage is represented by Y. 

be used, Appendix A and B display the data for each method considered. Curves can be 

fit for those methods, provided they reasonably fit the data and converge to 1. 

The thesis clearly shows that when using common techniques for 

estimating survivability of military systems and equipment, caution must be used. 
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Miscalculation and error can have drastic effects on the timely logistical support and 

operational tempo of our deploying units. 

B.       RECOMMENDATIONS 

The following recommendations can enhance the research and results found in 

this thesis: 

■ Increase the number of Monte Carlo trials for each (n,k) pair from 1000 to 

10,000. This may require another software package. 

■ Expand rank regression code to fully accommodate multiply censored data. 

The current code can only use MLE-MLE for multiply censored data. It will 

not allow for RRX when an item is suspended before the first failure. 

■ Apply a variance reduction scheme to the program. For each (n, k) pair the 

current program estimates each B1LCBX from different data. Using one data 

set for all B1LCBX calculations will smooth and speed up the results. 

■ Use Monte Carlo simulation for Non-Parametric and Bayesian estimation 

methods. Compare their coverage probabilities to the results presented here. 

■ Use Monte Carlo simulation for 3-parameter Weibull distributions. The 

failure-free parameter fits many types of data very well. 

■ Publicize the results of this thesis so that DoD will understand the possible 

effects of inherent bias when using common estimation techniques on small 

sample sizes and failures. 
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■ Incorporate the applications into OA3101, OA3102, and OA3103 so that 

students might gain a greater appreciation of the power of Monte Carlo 

simulation and the practical limits of asymptotic theory. 

■ Adjust military reliability standards to require actual coverage calculations. 

Further work in this subject area is needed. The effect it can have on military readiness is 

significant. Our forces must operate reliable and safe systems in the conduct of their 

mission. 
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APPENDIX A. MONTE CARLO SIMULATIONS RESULTS FOR RRX-RRX 
AND MLE-MLE 

Nominal 

Coverage 

Actual 
Coverage 

Method (3,3) (3,6) (4-6) (5,6) (6,6) (3,9) (5,9) (7,9) (9,9) (3,12) (6,12) (9,12) (12,12) 

0.8 mle-mle 0.736 0.466 0.538 0.553 0.792 0.476 0.527 0.605 0.819 0.473 0.566 0.618 0.843 

0.85 mle-mle 0.734 0.5 0.56 0.627 0.828 0.492 0.566 0.689 0.843 0.494 0.651 0.685 0.865 

0.875 mle-mle 0.794 0.528 0.569 0.652 0.844 0.509 0.641 0.679 0.866 0.516 0.649 0.711 0.883 

0.9 mle-mle 0.757 0.539 0.608 0.683 0.863 0.523 0.652 0.692 0.869 0.551 0.682 0.739 0.912 

D.92 mle-mle 0.809 0.575 0.649 0.749 0.873 0.62 0.705 0.763 0.916 0.574 0.713 0.785 0.925 

0.94 mle-mle 0.813 0.591 0.636 0.716 0.898 0.578 0.702 0.782 0.911 0.594 0.732 0.801 0.941 

0.95 mle-mle 0.819 0.613 0.673 0.723 0.888 0.602 0.698 0.784 0.93 0.616 0.756 0.833 0.936 

0.96 mle-mle 0.856 0.613 0.699 0.732 0.902 0.579 0.748 0.79 0.929 0.615 0.754 0.842 0.949 

0.97 mle-mle 0.828 0.628 0.702 0.762 0.932 0.639 0.752 0.807 0.94 0.629 0.782 0.824 0.948 

0.98 mle-mle 0.868 0.649 0.734 0.784 0.928 0.655 0.744 0.829 0.955 0.652 0.783 0.864 0.964 

0.985 mle-mle 0.867 0.682 0.752 0.789 0.946 0.649 0.791 0.843 0.951 0.665 0.83 0.862 0.963 

0.99 mle-mle 0.894 0.691 0.765 0.813 0.946 0.677 0.83 0.866 0.962 0.677 0.84 0.9 0.972 

0.993 mle-mle 0.893 0.699 0.786 0.824 0.955 0.694 0.821 0.873 0.973 0.708 0.852 0.909 0.978 

0.995 mle-mle 0.898 0.735 0.792 0.85 0.958 0.717 0.826 0.884 0.973 0.711 0.857 0.903 0.986 
0.997 mle-mle 0.904 0.73 0.797 0.843 0.962 0.732 0.853 0.899 0.97 0.709 0.863 0.913 0.983 

0.999 mle-mle 0.912 0.75 0.828 0.867 0.972 0.761 0.849 0.922 0.987 0.763 0.891 0.942 0.99 

0.9999 mle-mle 0.936 0.811 0.865 0.922 0.985 0.823 0.902 0.943 0.992 0.775 0.918 0.955 0.997 

0.99999 mle-mle 0.944 0.809 0.898 0.94 0.988 0.821 0.931 0.963 0.994 0.821 0.952 0.974 0.995 

Nominal 
Coverage 

Actual 
Coverage 

Method (3,3) (3,6) (4,6) (5,6) (6.6) (3,9) (5,9) (7,9) (9,9) (3,12) (6,12) (9,12) (12,12) 
0.8 rx-rx 0.64 0.623 0.609 0.619 0.607 0.607 0.582 0.594 0.604 0.628 0.585 0.57 0.604 

0.85 rx-rx 0.69 0.659 0.623 0.629 0.613 0.632 0.602 0.624 0.618 0.662 0.582 0.606 0.609 

0.875 rx-rx 0.714 0.688 0.64 0.653 0.62 0.641 0.67 0.643 0.647 0.677 0.632 0.625 0.646 

0.9 rx-rx 0.751 0.717 0.644 0.682 0.664 0.692 0.653 0.663 0.654 0.699 0.62 0.651 0.65 

0.92 rx-rx 0.843 0.76 0.745 0.723 0.687 0.788 0.693 0.703 0.668 0.743 0.66 0.636 0.649 

0.94 rx-rx 0.799 0.79 0.718 0.733 0.713 0.795 0.686 0.676 0.69 0.777 0.668 0.649 0.678 

0.95 rx-rx 0.831 0.792 0.76 0.739 0.705 0.769 0.692 0.705 0.688 0.802 0.679 0.68 0.675 

0.96 rx-rx 0.877 0.828 0.772 0.73 0.748 0.825 0.733 0.705 0.714 0.81 0.694 0.672 0.681 

0.97 rx-rx 0.903 0.861 0.799 0.759 0.731 0.849 0.746 0.742 0.697 0.843 0.711 0.694 0.723 

0.98 rx-rx 0.931 0.91 0.809 0.76 0.804 0.894 0.737 0.746 0.755 0.891 0.729 0.684 0.726 

0.985 rx-rx 0.951 0.916 0.851 0.8 0.802 0.927 0.776 0.744 0.754 0.915 0.753 0.709 0.723 

0.99 rx-rx 0.952 0.946 0.86 0.835 0.818 0.935 0.82 0.763 0.747 0.952 0.756 0.724 0.753 

0.993 rx-rx 0.98 0.968 0.899 0.859 0.833 0.965 0.799 0.778 0.763 0.955 0.797 0.747 0.75 

0.995 rx-rx 0.978 0.973 0.921 0.885 0.863 0.982 0.845 0.801 0.799 0.962 0.806 0.787 0.763 

0.997 rx-rx 0.99 0.98 0.939 0.882 0.885 0.988 0.886 0.831 0.81 0.976 0.811 0.8 0.764 

D.999 rx-rx 0.995 0.99 0.963 0.945 0.913 0.995 0.927 0.879 0.852 0.994 0.87 0.825 0.804 

0.9999 rx-rx 0.998 0.998 0.997 0.984 0.975 0.999 0.978 0.93 0.921 1 0.952 0.885 0.893 

0.99999 rx-rx 1 1 1 0.999 0.995 1 0.996 0.979 0.966 1 0.988 0.95 0.924 
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APPENDIX B. MONTE CARLO SIMULATIONS RESULTS FOR RRX-MLE 
AND RRX-MLE W++ 

Nominal 

Coverage 

Actual 
Coverage 

Method (3,3) (3,6) (4,6) (5,6) (6,6) (3,9) (5,9) (7.9) (9,9) (3,12) (6,12) (9,12) (12,12) 

0.8 rx-mle 0.807 0.701 0.703 0.723 0.79 0.682 0.703 0.737 0.772 0.692 0.708 0.726 0.804 

0.85 rx-mle 0.863 0.738 0.725 0.761 0.832 0.725 0.733 0.789 0.85 0.765 0.722 0.768 0.83 

0.875 rx-mle 0.903 0.779 0.751 0.785 0.855 0.743 0.79 0.813 0.862 0.781 0.774 0.806 0.884 

0.9 rx-mle 0.927 0.825 0.769 0.821 0.867 0.798 0.789 0.82 0.907 0.811 0.813 0.819 0.887 

0.92 rx-mle 0.961 0.884 0.855 0.857 0.909 0.902 0.84 0.876 0.921 0.874 0.851 0.847 0.921 

0.94 rx-mle 0.955 0.893 0.845 0.876 0.914 0.889 0.842 0.87 0.934 0.9 0.847 0.868 0.928 

0.95 rx-mle 0.964 0.909 0.881 0.861 0.913 0.892 0.86 0.886 0.934 0.92 0.854 0.907 0.949 

0.96 rx-mle 0.976 0.931 0.891 0.882 0.956 0.916 0.887 0.896 0.951 0.919 0.867 0.909 0.949 

0.97 rx-mle 0.989 0.958 0.916 0.901 0.949 0.949 0.901 0.914 0.952 0.947 0.898 0.927 0.967 

0.98 rx-mle 0.998 0.976 0.924 0.921 0.969 0.981 0.907 0.94 0.967 0.974 0.915 0.939 0.969 

0.985 rx-mle 0.999 0.982 0.955 0.936 0.978 0.988 0.94 0.929 0.973 0.986 0.939 0.937 0.973 

0.99 rx-mle 0.997 0.997 0.962 0.961 0.987 0.993 0.941 0.958 0.982 0.993 0.947 0.959 0.983 

0.993 rx-mle 1 0.995 0.971 0.969 0.99 0.998 0.945 0.958 0.978 0.998 0.957 0.964 0.981 

0.995 rx-mle 0.999 0.995 0.982 0.984 0.995 0.962 0.966 0.99 0.995 0.971 0.969 0.988 

0.997 rx-mle 1 1 0.99 0.977 0.993 0.985 0.978 0.989 0.999 0.975 0.975 0.988 

0.999 rx-mle 1 1 0.996 0.998 0.997 0.993 0.986 0.996 1 0.988 0.992 0.996 

0.9999 rx-mle 1 1 1 0.999 1 1 0.997 1 1 0.999 0.997 1 

0.99999 rx-mle 1 1 1 1 1 1 1 1 1 1 1 1 

Nominal 

Coverage 

Actual 
Coverage 

Method (3,3) (3,6) (4,6) (5,6) (6,6) (3,9) (5,9) (7,9) (9,9) (3,12) (6,12) (9,12) (12,12) 

0.8 rx-mle W++ 0.755 NA NA NA 0.74 NA NA NA 0.758 NA NA NA 0.755 

0.85 rx-mle W++ 0.774 NA NA NA 0.768 NA NA NA 0.802 NA NA NA 0.8 

0.875 rx-mle W++ 0.758 NA NA NA 0.796 NA NA NA 0.825 NA NA NA 0.835 

D.9 rx-mle W++ 0.788 NA NA NA 0.805 NA NA NA 0.835 NA NA NA 0.84 

D.92 rx-mle W++ 0.784 NA NA NA 0.826 NA NA NA 0.853 NA NA NA 0.848 

0.94 rx-mle W++ 0.811 NA NA NA 0.857 NA NA NA 0.878 NA NA NA 0.865 

0.95 rx-mle W++ 0.835 NA NA NA 0.867 NA NA NA 0.89 NA NA NA 0.867 

0.96 rx-mle W++ 0.824 NA NA NA 0.874 NA NA NA 0.891 NA NA NA 0.905 

0.97 rx-mle W++ 0.822 NA NA NA 0.87 NA ' NA NA 0.895 NA NA NA 0.924 

0.98 rx-mle W++ 0.843 NA NA NA 0.879 NA NA NA 0.929 NA NA NA 0.933 

0.985 rx-mle W++ 0.854 NA NA NA 0.898 NA NA NA 0.934 NA NA NA 0.929 

0.99 rx-mle W++ 0.875 NA NA NA 0.921 NA NA NA 0.939 NA NA NA 0.933 

0.993 rx-mle W++ 0.878 NA NA NA 0.926 NA NA NA 0.96 NA NA NA 0.94 

0.995 rx-mle W++ 0.86 NA NA NA 0.932 NA NA NA 0.955 NA NA NA 0.956 

0.997 rx-mle W++ 0.882 NA NA NA 0.946 NA NA NA 0.957 NA NA NA 0.958 

0.999 rx-mle W++ 0.89 NA NA NA 0.945 NA NA NA 0.958 NA NA NA 0.974 

0.9999 rx-mle W++ 0.919 NA NA NA 0.974 NA NA NA 0.979 NA NA NA 0.984 

0.99999 rx-mle W++ 0.915 NA NA NA 0.97 NA NA NA 0.992 NA NA NA 0.993 
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APPENDIX C. S-PLUS CODE FOR RIGHT CENSORED AND COMPLETE 
DATA 

The following code is implemented as a function within S-Plus. It pertains to test 
sets consisting of right censored and complete data. The function computes coverage 
probabilities for each level of confidence considered, based of Monte Carlo samples of 
size 1000. 

function(n, k, beta, eta, alpha) { 
# five inputs - sample size, number failures, ß, r\, (l-oc)100%. 

data <- rweibull(n, beta, eta) 
# generates n random #'s (time) from the Weibull Dist with parameters ß, T|. 

datal <- sort(data) 
# sorts data from lowest to highest. 

data.cens <- datal 
# duplicates vector datal 

v <- vector(mode = "logical", length = n) 
# creates vector "v" denoting whether the time in datal [I] is suspended (0) or failed (1) 

for(iinl:k){ 
v[i] <- 1 

} 
for(iin(k+l):n){ 

v[i] <- 0 
data.cens [i] <- data 1 [k] 
# assigns last (n-k) positions (suspended) to last failure time. 

} 

data2<-datal [l:k] 
# cuts the last (n-k) times (did not fail) for median rank calculations. 

medianrank <- vector(mode = "numeric", length 
= k) 

# creates vector medianrank size = k. 
y <- vector(mode = "numeric", length = k) 
x <- vector(mode = "numeric", length = k) 

# creates vectors x and y for regression. 
for(iinl:k){ 

s <- 2 * (n - i + 1) 
t <- 2 * i 
medianrank[i] <-1/(1 + (((n - i + l)/i) * qf(0.5, s, t))) 

# compute median ranks (y-axis). 
y[i] <- log( - log(l - medianrank[i])) 

# converts to Weibull linear plot scale (y-axis) 
x[i] <- log(data2[I])    # 

# converts to Weibull linear plot scale (x-axis) 
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} 
regression <- lm(x ~ y) 

# runs regression x on y (we know y-value and want x-value) 
bl.reg <- predict(regression, data.frame(y = log( - log(l - 0.01))), se.fit = T) 

# predicts Bl based on regression fit and computes standard error. 
s.l <- survReg(Surv(data.cens, v) ~ 1, dist = "weibull") 

# runs MLE on data.cens (length = n) and v (length = n) 
bl.mle <- predicts. 1, data.frame(l), p = c(0.01), type = "uquantile", se = T) 

# predicts Bl based on MLE fit and computes standard error. 
tlow.rrx.mle <- bl.regSfit - qt(alpha, k - 2) * bl.mleSse.fit 

# computes RRX-MLE BlLCBoc based on regression fit and MLE standard error. 
tlow.rrx.rrx <- bl.reg$fit - qt(alpha, k - 2) * bl.reg$se.fit 

# computes RRX-RRX BlLCBoc based on regression fit and standard error. 
tlow.mle.mle <- bl.mleSfit - qnorm(alpha) * bl.mleSse.fit 

# computes MLE-MLE BlLCBoc based on MLE fit and standard error. 

tlow.conf.rrx.mle <- exp(tlow.rrx.mle) 
tlow.conf.rrx.rrx <- exp(tlow.rrx.rrx) 
tlow.conf.mle.mle <- exp(tlow.mle.mle) 

# transforms log(time) to time. 
return(c(tlow.conf.rrx.rrx, tlow.conf.rrx.mle, tlow.conf.mle.mle, 

tlow.conf.mle.rrx)) 
# returns BlLCBoc to function for probability coverage calculation. 
} 
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APPENDIX D. S-PLUS CODE FOR AAAV APPLICATION 

The following code is implemented as a function within S-Plus. It pertains to the 
specific AAAV test. The function computes MLE-MLE coverage probabilities for each 
level of confidence considered, based of Monte Carlo samples of size 1000. 

function(n, k, beta, eta, alpha) { 
# five inputs - sample size (204), number failures (23), ß, T|, a. 

data <- rweibull(n, beta, eta) 
# generates 204 random #'s (time) from the Weibull Dist with parameters ß, r\. 

datal <- sort(data) 
# sorts data from lowest to highest. 

for(i in 25:n) { 
datal [i]<- datal [24] 

# all suspended items after the 23rd failure had the same suspension times. 
v <- c(l, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,1,1, 1, 

1, 1, 1, 1, 1, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0,0,0,0) 

# creates vector v which specifies where the failures ("1") occur. 
s.l <- survReg(Surv(datal, v) ~ 1, dist = "weibull") 

# runs MLE on vector "v" and vector "datal" 
bl.mle <- predicts. 1, data.frame(l), p = c(0.01), type = "uquantile", se = T) 

# predicts Bl based on MLE fit and standard error. 
tlow.mle.mle <- bl.mle$fit - qnorm(alpha) * bl.mleSse.fit 

# computes MLE-MLE BlLCBoc based on MLE fit and standard error. 
tlow.conf.mle.mle<- exp(tlow.mle.mle) 

# transforms log(time) to time 
return(c(tlow.mle.mle)) 

# returns BlLCBoc for computing coverage probability 
} 
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